



# Aufbau und erste Ergebnisse einer Laser Flash Anlage zur Bestimmung der Temperaturleitfähigkeit von Dünnschichten Gemeinsames Entwicklungsprojekt: Linseis GmbH - KIT

M. Rohde, I. Südmeyer, D. Gaede, IAM-AWP

Institut für angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP), Thermophysik und Thermodynamik



# Gliederung



- Messprinzip
- Aktueller Messaufbau
- Ergebnisse
  - Versuche mit unterschiedlichen Reflexionsschichten
  - Untersuchungen an Multilayer-Schichten
- Zusammenfassung und Ausblick







### **Aktueller Aufbau**















# 200nm Au auf Glas





Messungen Mo-Schichten auf Glasträger



Verlauf der Abkühlkurven korrespondiert mit Mo-Schichtdicken

Rückseitenmessung (RF)





11

Arbeitskreis Thermophysik, 18.-19.. März 2013, Dresden





## Si (390µm) /SiO2 (1µm) + Mo (400nm)





## Cr (100-500nm) /Cr (10nm) + Mo (400nm)







# Modellierung des FF-Signals





Baba (2009): 
$$T_f(t, x = 0) = \frac{1}{b_f \sqrt{\pi \cdot t}} \left[ 1 + 2\sum_{n=1}^{\infty} \gamma^n \exp\left(-n^2 \frac{\tau_f}{t}\right) \right] \quad mit \ \tau_f = \frac{d_f^2}{\alpha_f}$$

15



Sehr gute Übereinstimmung von Baba's 2-Lagen-Modell mit Messkurve

16



### Modellierung des FF-Signals



Auswertung der LFDS-Signale für Cr/CrAIN-Multilayer



### Modellierung des FF-Signals



#### Aktuelle Software von Aprosoft

| Linseis - AproSoft Laser Flash Evaluation v1.07 Version TF {Project251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _1_139(120).lf}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linseis - AproSoft Laser Flash Evaluation v1.07 Version TF {Project251<br>Measurement Evaluation Heating Settings<br>Load Print Change Save interpretation<br>Severals Load result-temp. file Export / SaveAs<br>0,085<br>0,085<br>0,085<br>0,085<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,065<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0,075<br>0 | _1_139(120).if}<br>Th Diff. 0.0346 cm2/s<br>Temp. 120 °C / 139<br>Calc modell ThinFilm Themoreflect ♥<br>Baseline Baseline ♥<br>Labor= Apr0soft<br>Operator Dusza<br>Costumer= 311<br>Project25 1<br>Date= 25.02.2013<br>Material= MAT1<br>Sample= 1<br>Length= 0.210 cm<br>Temp.= 120<br>Atm= Vakuum<br>Info= D=1.00 cm<br>Quality of Fit= 80.9<br>Iris= 1<br>Ampl= 200<br>Length[cm] Cp[J/gK] Rho[g/cm3] Diff.[cm2/s] Calc<br>0.0000800 0.240<br>0.0200 0.722<br>File KITa-900<br>Load Save Biot 0.00 0.000 |
| Close                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Starting met Laser shot comes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Too low amlitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### Mo, 200nm

# Zusammenfassung



- Reflexionsschicht:
  - Mo: sehr gute Reflexionssignale, sehr gute Stabilität
  - Al: gute Reflexionssignale, schwächer als Mo, gute Stabilität
  - Au: gute Reflexionssignale auf Quarzglas
- Auswertemodell nach *Baba* zeigt sehr gute Übereinstimmung mit Messkurven
- Messungen mit Multilayer mit Mo-Reflexionsschicht
  - Si/SiO<sub>2</sub>
  - Ti/TiAIN, Cr/CrAIN (Temperaturleitfähigkeiten ermittelt)
- Weitere Messungen:

- **(Bi**,Sb)<sub>2</sub>Te<sub>3</sub> auf Quarzglas, LiCoO<sub>2</sub> auf Stahl und CoSb<sub>3</sub> auf Si
- Beheizbarer Probenträger